【题目】已知为抛物线:的焦点,过的动直线交抛物线于,两点.当直线与轴垂直时,.
(1)求抛物线的方程;
(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线,,的斜率成等差数列,求点的坐标.
科目:高中数学 来源: 题型:
【题目】已知函数(,且).
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最大值.
【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .
【解析】【试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得在上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.
【试题解析】
(Ⅰ),
设 ,则.
∵, ,∴在上单调递增,
从而得在上单调递增,又∵,
∴当时, ,当时, ,
因此, 的单调增区间为,单调减区间为.
(Ⅱ)由(Ⅰ)得在上单调递减,在上单调递增,
由此可知.
∵, ,
∴.
设,
则 .
∵当时, ,∴在上单调递增.
又∵,∴当时, ;当时, .
①当时, ,即,这时, ;
②当时, ,即,这时, .
综上, 在上的最大值为:当时, ;
当时, .
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .
(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;
( Ⅱ ) 设直线 与轴和轴的交点分别为,为圆上的任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的焦点为顶点作相似椭圆.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于, 两点.
(1)求圆的直角坐标方程及弦的长;
(2)动点在圆上(不与, 重合),试求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间几何体中,平面平面,与都是边长为2的等边三角形,,点在平面上的射影在的平分线上,已知和平面所成角为.
(1)求证:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.
8 | 9 | 10 | 11 | 12 | 13 | |
频数 | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;
(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?
(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com