【题目】已知分别是焦距为的椭圆的左、右顶点, 为椭圆上非顶点的点,直线的斜率分别为,且.
(1)求椭圆的方程;
(2)直线(与轴不重合)过点且与椭圆交于两点,直线与交于点,试求点的轨迹是否是垂直轴的直线,若是,则求出点的轨迹方程,若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】设{an}是等差数列,数列{an}的前n项和为Sn , {bn}是各项都为正数的等比数列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求面AMC与面BMC所成二面角的大小余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两定点A(2,5),B(-2,1),M(在第一象限)和N是过原点的直线l上的两个动点,且|MN|=,l∥AB,如果直线AM和BN的交点C在y轴上,求点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣ (m+3)x2+(m+6)x,x∈R.(其中m为常数)
(1)当m=4时,求函数的极值点和极值;
(2)若函数y=f(x)在区间(0,+∞)上有两个极值点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线l1:x+8y+7=0和l2:2x+y﹣1=0.
(1)求l1与l2交点坐标;
(2)求过l1与l2交点且与直线x+y+1=0平行的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出如下几个结论:①命题“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命题“x∈R,sinx+ ≥2”的否定是“x∈R,sinx+ <2”;③对于x∈(0, ),tanx+ ≥2;
④x∈R,使sinx+cosx= .其中正确的为( )
A.③
B.③④
C.②③④
D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com