精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右顶点分别为,长轴长为4,离心率为.过右焦点的直线交椭圆两点(均不与重合),记直线的斜率分别为.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在常数,当直线变动时,总有成立?若存在,求出的值;若不存在,说明理由.

【答案】(Ⅰ) .(Ⅱ)存在常数使得恒成立.

【解析】

(Ⅰ)由题意由题知解得,即可求得椭圆方程;(Ⅱ)根据椭圆的准线方程,设出直线l的方程,代入椭圆方程,利用韦达定理即可求得CD,存在λ,使得k1λk恒成立.

(Ⅰ)由题知解得

所以求椭圆E的方程为

(Ⅱ)由(Ⅰ)知A(﹣20),B20),

当直线l的斜率不存在时,直线l的方程为x1

解得

;均有

猜测存在

当直线l的斜率存在时,设直线l的方程为ykx1),Cx1y1),Dx2y2).

得(4k2+3x28k2x+4k2120

0

所以存在常数使得恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a0,且a≠1.命题P:函数fx)=logax在(0+∞)上为增函数;命题Q:函数gx)=x22ax+4有零点.

1)若命题PQ满足PQ假,求实数a的取值范围;

2)命题S:函数yfgx))在区间[2+∞)上值恒为正数.若命题S为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,ABCD,∠BAD90°ABAD1CD2,若将△BCD沿着BD折起至△BC'D,使得ADBC'

1)求证:平面C'BD⊥平面ABD

2)求C'D与平面ABC'所成角的正弦值;

3MBD中点,求二面角MAC'B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=2cosωx)(ω>0)满足:f)=f),且在区间()内有最大值但没有最小值,给出下列四个命题:P1在[0]上单调递减;P2的最小正周期是4πP3的图象关于直线x对称;P4的图象关于点(0)对称.其中的真命题是( )

A.P1P2B.P2P4C.P1P3D.P3P4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)设函数(其中的导函数),判断上的单调性;

(2)若函数在定义域内无零点,试确定正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.

(Ⅰ)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;

(Ⅱ)在抽取的学生中,从成绩为[95,100]的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;

(Ⅲ)记高一、高二两个年级知识竞赛的平均分分别为,试估计的大小关系.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线E的极坐标方程为4(ρ2-4sin2θ=(16-ρ2cos2θ,以极轴为x轴的非负半轴,极点O为坐标原点,建立平面直角坐标系.

1)写出曲线E的直角坐标方程;

2)若点P为曲线E上动点,点M为线段OP的中点,直线l的参数方程为t为参数),求点M到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点QC的渐近线上,则C的两条渐近线方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场从20181月份起的前这个月,顾客对某商品的需求总量,(单位:件)与x的关系近似地满足(其中,且),该商品第x月的进货单价(单位:元)与x的近似关系是

1)写出2018年第x月的需求量(单位:件)与x的函数关系式;

2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问该商场2018年第几个月销售该商品的月利润最大,最大月利润为多少元?

查看答案和解析>>

同步练习册答案