精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的图象如图所示,曲线BCD为抛物线的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2﹣x),求x的取值范围.

【答案】解:( I)当﹣1≤x≤0时,函数图象为直线且过点(﹣1,0)(0,3),直线斜率为k=3,

所以y=3x+3;

当0<x≤3时,函数图象为抛物线,设函数解析式为y=a(x﹣1)(x﹣3),

当x=0时,y=3a=3,解得a=1,所以y=(x﹣1)(x﹣3)=x2﹣4x+3,

所以

( II)当x∈[﹣1,0],令3x+3=1,解得

当x∈(0,3],令x2﹣4x+3=1,解得

因为0<x≤3,所以

所以

( III)当x=﹣1或x=3时,f(x)=f(2﹣x)=0,

当﹣1<x<0时,2<2﹣x<3,由图象可知f(x)>0,f(2﹣x)<0,

所以f(x)>f(2﹣x)恒成立;

当0≤x≤2时,0≤2﹣x≤2,f(x)在[0,2]上单调递减,

所以当x<2﹣x,即x<1时f(x)>f(2﹣x),所以0≤x<1;

当2<x<3时,﹣1<2﹣x<0,此时f(x)<0,f(2﹣x)>0不合题意;

所以x的取值范围为﹣1<x<1


【解析】(I)当﹣1≤x≤0时图形为直线,根据两点坐标可求出解析式;当0<x≤3时,函数图象为抛物线,设函数解析式为y=a(x﹣1)(x﹣3),带入坐标点可求出抛物线方程;(II)函数f(x)图形与直线y=1的交点横坐标即为所求x的值;(III)结合函数图形,利用函数的单调性来求解x的取值范围;
【考点精析】认真审题,首先需要了解函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 是两个不共线的向量,且 =(cosα,sinα), =(cosβ,sinβ).
(1)求证: + 垂直;
(2)若α∈(﹣ ),β= ,且| + |= ,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)当a= 时,求函数f(x)的单调区间;
(2)设g(x)=(x2﹣2x)ex , 如果对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD为正方形,侧面PAD为直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分别为AB、PD的中点.
(Ⅰ)求证:EF∥面PBC;
(Ⅱ)求证:AP⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD‖BC,且 ,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设 (M与C不重合).

(1)求证:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角为150°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四点A、B、C、D满足| |=3,| |=7,| |=11,| |=9,则 的取值为(
A.只有一个
B.有二个
C.有四个
D.有无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,2AB=2AC=AA1 , 则异面直线BA1与B1C所成的角的余弦值等于

查看答案和解析>>

同步练习册答案