精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为,对任意实数,都有.

(1)若 ,且,求 的值;

(2)若为常数,函数是奇函数,

①验证函数满足题中的条件;

②若函数求函数的零点个数.

【答案】(1) 解得 ;(2) ①见解析;② 当时,函数只有1零点;

时,函数有3零点;当是,函数有5零点.

【解析】试题分析:(1)由题意,取,得,再取,得

即函数内为奇函数,代入化简即可求解的值.

(2)由函数是奇函数,得,得出的解析式,进而求解.

再由,得,令,则,作出图象,进而分类讨论,求得函数零点的个数.

试题解析:

(1)对题中条件取,得.

再取,得,则

即函数内为奇函数.

所以

.

解得 .

(2)由函数是奇函数,得,则.

此时,满足函数是奇函数,且有意义.

①由,得,则对任意实数

所以.

②由,得,令,则.

作出图象

由图可知,当时,只有一个,对应有3个零点;

时,只有一个,对应只有一个零点;

时, ,此时 .

得在时, ,三个分别对应一个零点,共3个.

时, ,三个分别对应1个,1个,3个零点,共5个.

综上所述,当时,函数只有1零点;

时,函数有3零点;

是,函数有5零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考数学(理)】

已知函数.

(1)当时,试求函数图像过点的切线方程;

(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;

(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

1)求椭圆的方程;

2)求的最小值,并求此时圆的方程;

3)设点是椭圆上异于, 的任意一点,且直线分别与轴交于点为坐标原点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在区间上的单调性;

(2)若曲线仅在两个不同的点处的切线都经过点,其中,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发了一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(小时)之间的关系近似满足如图所示的曲线.

(1)写出服药后之间的函数关系式;

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病的有效时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是某企业2010年至2016年污水净化量(单位: 吨)的折线图.

注: 年份代码1-7分别对应年份2010-2016.

(1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数加以说明;

(2)建立关于的回归方程,预测年该企业污水净化量;

(3)请用数据说明回归方程预报的效果.

附注: 参考数据:

参考公式:相关系数,回归方程中斜率和截距的最小;

二乘法估汁公式分别为

反映回归效果的公式为:,其中越接近于,表示回归的效果越好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处有最小值为0.

(1)求的值;

(2)设

①求的最值及取得最值时的取值;

②是否存在实数,使关于的方程上恰有一个实数解?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数 (a>0),

若存在,使得成立,则实数的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块扇形铁皮OAB,∠AOB=60°,OA=72cm,要剪下来一个扇环形ABCD,作圆台容器的侧面,并且在余下的扇形OCD内能剪下一块与其相切的圆形使它恰好作圆台容器的下底面(大底面).试求:

(1)AD应取多长?

(2)容器的容积为多大?

查看答案和解析>>

同步练习册答案