精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

【答案】解:( I)C1的直角坐标方程为(x﹣1)2+y2=1,,
C2的直角坐标方程为x=3;
( II)设曲线C1与x轴异于原点的交点为A,
∴PQ过点A(2,0),
设直线PQ的参数方程为,
代入C1可得t2+2tcosθ=0,解得,
可知|AP|=|t2|=|2cosθ|
代入C2可得2+tcosθ=3,解得
可知
所以PQ= ,当且仅当 时取等号,
所以线段PQ长度的最小值为

【解析】(Ⅰ)根据极坐标和普通坐标之间的关系进行转化求解即可.(Ⅱ)设出直线PQ的参数方程,利用参数的几何意义进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的不等式的解集为,求的值;

(2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且),且,设,数列满足.

1)求证:数列是等比数列并求出数列的通项公式;

2)求数列的前n项和

3)对于任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为提高市民的戒烟意识,通过一个戒烟组织面向全市烟民征招志愿戒烟者,从符合条件的志愿者中随机抽取100名,将年龄分成五组,得到频率分布直方图如图所示.

(1)求图中的值,并估计这100名志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表);

(2)若年龄在的志愿者中有2名女性烟民,现从年龄在的志愿者中随机抽取2人,求至少有一名女性烟民的概率;

(3)该戒烟组织向志愿者推荐了两种戒烟方案,这100名志愿者自愿选取戒烟方案,并将戒烟效果进行统计如下:

有效

无效

合计

方案

48

60

方案

36

合计

完成上面的列联表,并判断是否有的把握认为戒烟方案是否有效与方案选取有关.

参考公式:.

参考数据:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

不支持

支持

合计

男性市民

女性市民

合计

(1)根据已知数据把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否有的把握认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

直径分组

甲基地频数

10

30

120

175

125

35

5

乙基地频数

5

35

115

165

110

60

10

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关?”

甲基地

乙基地

合计

优质品

_________

_________

_________

非优质品

_________

_________

_________

合计

_________

_________

_________

(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表);

(3)记甲基地直径在范围内的五个桔柚分别为,现从中任取二个,求含桔柚的概率.

附:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点F(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线被圆截得的弦长为4,则当取最小值时直线的斜率为( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:

间隔时间(分钟)

8

10

12

14

16

18

等候人数(人)

16

19

23

26

29

33

调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.

参考公式:用最小二乘法求线性回归方程的系数公式:

1)若选取的是前4组数据,求关于的线性回归方程

2)判断(1)中的方程是否是“理想回归方程”:

3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?

查看答案和解析>>

同步练习册答案