精英家教网 > 高中数学 > 题目详情
15.△ABC1和△ABC2是两个腰长均为1的等腰直角三角形,当二面角C1-AB-C2为60°时,点C1和C2之间的距离等于$\sqrt{2},1,\frac{{\sqrt{2}}}{2}$.(请写出所有可能的值)

分析 ①若AB是斜边,则根据题中二面角的大小,首先要作出此二面角的平面角,可以取AB中点M,连接MC1、MC2,则∠C1MC2即为等腰直角△ABC1和△ABC2所在的平面构成的二面角的平面角,进而可以求得答案;
②若AB是直角边,则∠C1AC2即为等腰直角△ABC1和△ABC2所在的平面构成的二面角的平面角,进一步可得答案;
③如图3所示:AB为公共直角边时,C1在靠近A的这侧,但是C2在靠近B的那侧.

解答 解:①如图1所示:当AB为斜边时,取AB中点M,连接MC1、MC2
∵△ABC1和△ABC2均为等腰直角三角形,
∴MC1⊥AB,MC2⊥AB,则∠C1MC2即为等腰直角△ABC1和△ABC2所在的平面构成的二面角的平面角,
∴∠C1MC2=60°,
又∵MC1=MC2=$\frac{\sqrt{2}}{2}$,
∴C1C2=$\frac{\sqrt{2}}{2}$;
②如图2所示:当AB为直角边时,
∵BA⊥AC1,BA⊥AC2
∴∠C1AC2即为等腰直角△ABC1和△ABC2所在的平面构成的二面角的平面角,
∴∠C1AC2=60°,
又∵C1A=C2A=1,
∴C1C2=1;
③如图3所示:AB为公共直角边时,C1在靠近A的这侧,但是C2在靠近B的那侧,
此时C1C2=$\sqrt{2}$,
综上所述:点C1和C2之间的距离等于$\frac{\sqrt{2}}{2}$或1或$\sqrt{2}$.
故答案为:$\sqrt{2},1,\frac{{\sqrt{2}}}{2}$.

点评 本题主要考查点、线、面之间的距离计算,二面角及其度量等基本知识,同时考查空间想象能力和推理、运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若$\frac{a}{b}$=$\frac{c}{d}$,则下列各式一定成立的是(  )
A.$\frac{a+b}{b}$=$\frac{c+d}{c}$B.$\frac{a+c}{c}$=$\frac{b+d}{d}$C.$\frac{a-c}{c}$=$\frac{b-d}{b}$D.$\frac{a-c}{a}$=$\frac{b-d}{d}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.极坐标方程ρ2cos2θ=1为所表示的曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.若函数f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为$\frac{π}{3}$,OO1=$\frac{\sqrt{2}}{2}$,则∠AO1B=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)的定义域为R,且满足f(1)=2,f′(x)<1,则不等式f(x)<x+1的解集为(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某次运动会甲、乙两名射击运动员成绩如图所示,甲、乙的平均数分别为为 $\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,方差分别为s2,s2,则(  )
A.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2>s2B.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2<s2
C.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2>s2D.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2<s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的偶函数,它在[0,+∞)上递增,那么一定有(  )
A.$f(\frac{3}{4})<f({a^2}-a+1)$B.$f(\frac{3}{4})≤f({a^2}-a+1)$C.$f(\frac{3}{4})>f({a^2}-a+1)$D.$f(\frac{3}{4})≥f({a^2}-a+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分为a,b,c,向量$\overrightarrow m$=(2b-c,a),$\overrightarrow n$=(cosC,cosA),且$\overrightarrow m∥\overrightarrow n$.
(1)求角A的大小;
(2)若$\overrightarrow{AB}•\overrightarrow{AC}$=4,求边a的最小值.

查看答案和解析>>

同步练习册答案