精英家教网 > 高中数学 > 题目详情
有A、B、C三个盒子,每个盒子中放有红、黄、蓝颜色的球各一个,所有的球仅有颜色上的区别.
(Ⅰ)从每个盒子中任意取出一个球,记事件S为“取得红色的三个球”,事件T为“取得颜色互不相同的三个球”,求P(S)和P(T);
(Ⅱ)先从A盒中任取一球放入B盒,再从B盒中任取一球放入C盒,最后从C盒中任取一球放入A盒,设此时A盒中红球的个数为ξ,求ξ的分布列与数学期望Eξ.
(Ⅰ)∵A、B、C三个盒子,
每个盒子中放有红、黄、蓝颜色的球各一个,
所有的球仅有颜色上的区别.
从每个盒子中任意取出一个球,记事件S为“取得红色的三个球”,
事件T为“取得颜色互不相同的三个球”,
P(S)=
1
3
×
1
3
×
1
3
=
1
27

P(T)=
C13
C12
C11
C13
C13
C13
=
2
9

(Ⅱ)ξ的可能值为0,1,2.
①考虑ξ=0的情形,首先A盒中必须取一个红球放入B盒,相应概率为
1
3

此时B盒中有2红2非红;
若从B盒中取一红球放入C盒,相应概率为
1
2
,则C盒中有2红2非红,
从C盒中只能取一个非红球放入A盒,相应概率为
1
2

若从B盒中取一非红球放入C盒,相应概率为
1
2

则C盒中有1红3非红,从C盒中只能取一个非红球放入A盒,相应概率为
3
4

P(ξ=0)=
1
3
×[
1
2
×
1
2
+
1
2
×
3
4
]=
5
24

②考虑ξ=2的情形,首先A盒中必须取一个非红球放入B盒,相应概率为
2
3

此时B盒中有1红3非红;
若从B盒中取一红球放入C盒,相应概率为
1
4

则C盒中有2红2非红,从C盒中只能取一个红球放入A盒,相应概率为
1
2

若从B盒中取一非红球放入C盒,相应概率为
3
4

则C盒中有1红3非红,从C盒中只能取一个红球放入A盒,相应概率为
1
4

P(ξ=2)=
2
3
×[
1
4
×
1
2
+
3
4
×
1
4
]=
5
24

P(ξ=1)=1-
5
24
-
5
24
=
7
12

所以ξ的分布列为
ξ012
P
5
24
7
12
5
24
ξ的数学期望Eξ=0×
5
24
+1×
7
12
+2×
5
24
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某电视台举办的《上海世博会知识有奖问答比赛》中,甲、乙、丙三人同时回答一道问题,已知甲回答对这道题的概率是
3
4
,甲、丙两人都回答错的概率是
1
12
,乙、丙两人都回答对的概率是
1
4
,且三人答对这道题的概率互不影响.
(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)求答对该题的人数ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量ξ~B(2,p),η~B(4,p),若Eξ=
3
4
,则Dη
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

NBA总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA有特殊的政策和规则,能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元(相当于篮球巨星科比的年薪).
(1)求所需比赛场数X的概率分布;
(2)求组织者收益的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=(  )
A.1-pB.pC.
1
2
+p
D.
1
2
-P

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若某程序图如图所示,则该程序 运行后输出的k的值是(     )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某程序框图如图所示,若该程序运行后输出的值是,判断框内“”,且,则___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

执行右面的程序框图,若输入的分别为1,2,3,则输出的M=(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案