精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上周期为2的可导函数,若f(2)=2,且
lim
x→0
f(x+2)-2
2x
=-2
,则曲线y=f(x)在点(0,f(0)处切线方程是(  )
分析:利用导数的定义先求切线的斜率,再由直线方程的点斜式写出切线方程.
解答:解:∵f(2)=2
由题意,
lim
x→0
f(x+2)-2
2x
=
1
2
lim
x→0
f(x+2)-f(2)
x
=
1
2
f(2)
=-2
∴f′(2)=-4
根据导数的几何意义可知函数在x=2处得切线斜率为-4,
∴函数在(2,2)处的切线方程为y-2=-4(x-2)即y=-4x+10
∵函数f(x)是定义在R上周期为2
∴曲线y=f(x)在点(2,f(2))处的切线向左平移2个单位即可得到(0,f(0)处切线,方程为y=-4(x+2)+10即y=-4x+2
故选B
点评:本题考查导数的定义及导数的几何意义的应用,会利用导数求曲线上过某点切线方程,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案