【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是( )
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对任意实数x,y均有f(x)=f( )+f( ).当x>0时,f(x)>0
(1)判断函数f(x)在R上的单调性并证明;
(2)设函数g(x)与函数f(x)的奇偶性相同,当x≥0时,g(x)=|x﹣m|﹣m(m>0),若对任意x∈R,不等式g(x﹣1)≤g(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A为椭圆 =1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1 , F2 , 且当线段AF1的中点在y轴上时,cos∠F1AF2= . (Ⅰ)求该椭圆的离心率;
(Ⅱ)设 ,试判断λ1+λ2是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点A,B是单位圆O上的两点,A,B点分别在第一,而象限,点C是圆O与x轴正半轴的交点,若∠COA=60°,∠AOB=α,点B的坐标为(﹣ , ).
(1)求sinα的值;
(2)已知动点P沿圆弧从C点到A点匀速运动需要2秒钟,求动点P从A点开始逆时针方向作圆周运动时,点P的纵坐标y关于时间t(秒)的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题: ①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F与AM的交点在y轴上;
⑤AB′与A′B交于原点.
其中真命题的是 . (写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD﹣A1B1C1D1 , O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1;
(2)面OC1D∥面AB1D1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com