精英家教网 > 高中数学 > 题目详情
已知△ABC的面积为S,且
AB
AC
=1,若
1
2
<S<
3
2
,则
AB
AC
夹角的取值范围是(  )
分析:利用向量的数量积求得表达式,根据三角形面积的范围,可以得到B的范围,然后求题目所求夹角的取值范围.
解答:解:∵
AB
AC
=1,即|
AB
|•|
AC
|
cosA=1,所以|
AB
|•|
AC
|
=
1
cosA

而S=
1
2
|
AB
|•|
AC
|
sinA,把①代入得出S=
1
2
sinA
cosA

1
2
<S<
3
2

所以
sinA
cosA
∈(1,
3

即tanA∈(1,
3
)又A∈(0,π)
所以A∈(
π
4
π
3
)

故选D
点评:本题考查平面向量数量积的运算,数量积表示两个向量的夹角,注意向量的夹角的应用,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB=BE:EC=2:1,AE与CD交于P.设存在λ和μ使
AP
AE
PD
CD
AB
=
a
BC
=
b

(1)求λ及μ;
(2)用
a
b
表示
BP

(3)求△PAC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
3
2
,且b=2,c=
3
,则sinA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为2
3
,AB=2,BC=4,则三角形的外接圆半径为
2或
4
21
3
2或
4
21
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
1
4
(a2+b2-c2)
,则C的度数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)已知△ABC的面积为15,且E为AB的中点,求CE的长.

查看答案和解析>>

同步练习册答案