精英家教网 > 高中数学 > 题目详情
19.已知f′(x)是定义在R上的函数y=f(x)的导函数,且f(x)<f′(x),则a=$\frac{1}{2}$f(ln2),b=$\frac{1}{e}$f(1),c=f(0)的大小关系为(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得a=g(ln2)与c=g(0)、b=g(1)的大小关系,即可得到答案.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)•{e}^{x}-f(x)•{e}^{x}}{{e}^{2x}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又a=$\frac{f(ln2)}{{e}^{ln2}}$=g(ln2),b=$\frac{f(1)}{e}$=g(1),c=$\frac{f(0)}{{e}^{0}}$=g(0),
由0<ln2<1,可得g(0)<g(ln2)<g(1),
即c<a<b.
故选:D.

点评 本题考查导数的运用:求单调性,考查导数的运算性质的运用,以及单调性的运用:比较大小,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四边形ABEF中,AF⊥FB,O为AB的中点,矩形ABCD所在的平面垂直于平面ABEF.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程组$\left\{\begin{array}{l}{2x-3y+z=0}\\{x-2y+3z=0}\end{array}\right.$(xyz≠0),求x:y:z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.太湖中有一小岛C,沿太湖有一条正南方向的公路,一辆汽车在公路A处测得小岛在公路的南偏西15°方向上,汽车行驶1km到达B处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是$\frac{\sqrt{3}}{6}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设logbN<logaN<0,N>1,且a+b=1,则必有(  )
A.1<a<bB.a<b<1C.1<b<aD.b<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等比数列{an}同时满足下列条件:①a1+a6=33,②a3a4=32,③三个数4a2,2a3,a4依次成等差数列.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,P是正方体ABCD-A′B′C′D′的面ABCD上任意一点,试在面ABCD内过点P作直线l,使l⊥PC′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{x-4,x≥4}\\{f(x+3),x<4}\end{array}\right.$,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在正方体的6个面分别写上数字1、1、2、2、3、3.
(1)任意抛4次这个正方体,一定至少出现两次相同的数字,为什么?
(2)有2个上面这样的正方体,一起抛,至少抛多少次会出现两个数相加的和相等?

查看答案和解析>>

同步练习册答案