精英家教网 > 高中数学 > 题目详情

【题目】已知直线经过椭圆的右焦点,交椭圆于点,点为椭圆的左焦点,的周长为..

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与直线的倾斜角互补,且交椭圆于点,求证:直线与直线的交点在定直线上.

【答案】(Ⅰ)(Ⅱ)见证明

【解析】

(Ⅰ)根据椭圆的性质及已知条件求出,即可得出椭圆的标准方程。

(Ⅱ)设出直线和直线的直线方程,分别代入椭圆的标准方程,利用弦长公式和韦达定理得出,根据 确定的值,联立直线和直线的方程得到点P的坐标,从而确定点P在定直线上。

解:(Ⅰ)由已知,得

椭圆的标准方程.

(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.

.

将直线的方程代入椭圆方程得:

同理,.

,此时,

直线

,即点的定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:

产品

A

B

C

数量(件)

180

270

90

采用分层抽样的方法从以上产品中共抽取6.

1)求分别抽取三种产品的件数;

2)将抽取的6件产品按种类编号,分别记为现从这6件产品中随机抽取2.

(ⅰ)用所给编号列出所有可能的结果;

(ⅱ)求这两件产品来自不同种类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)如图,已知四棱锥的底面是菱形,对角线交于点底面,设点满足

1)当时,求直线与平面所成角的正弦值;

2)若二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地球海洋面积远远大于陆地面积,随着社会的发展,科技的进步,人类发现海洋不仅拥有巨大的经济利益,还拥有着深远的政治利益.联合国于第63届联合国大会上将每年的68日确定为“世界海洋日”.201968日,某大学的行政主管部门从该大学随机抽取100名大学生进行一次海洋知识测试,并按测试成绩(单位:分)分组如下:第一组[6570),第二组[7075),第二组[7580),第四组[8085),第五组[8590],得到频率分布直方图如下图:

1)求实数的值;

2)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从6人中抽取2人作为正、副队长,列举出所有的基本事件并求“抽取的2人为不同组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆C的方程为,过点A的直线l与圆C相切,点P为圆C上的动点.

1)求直线l的方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的共有(

因为直线是无限的,所以平面内的一条直线就可以延伸到平面外去;

两个平面有时只相交于一个公共点;

分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上;

一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内;

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

同步练习册答案