精英家教网 > 高中数学 > 题目详情

【题目】2018届福建省福州市高三上学期期末】过椭圆的右焦点作轴的垂线,交两点,直线的左焦点和上顶点.若以为直径的圆与存在公共点,则的离心率的取值范围是(

A. B. C. D.

【答案】A

【解析】直线的方程为圆心坐标为半径为与圆有公共点 可得 ,故选A.

【方法点晴】本题主要考查利用椭圆的简单性质及求椭圆的离心率范围,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围 . 本题是利用点到直线的距离小于圆半径构造出关于的不等式,最后解出的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射击一次,命中不足8环的概率;

(2)求甲射击一次,至少命中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在平面互相垂直

(1)求二面角的大小;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,在四棱锥PABCD中,侧面PAD底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中点.

(Ⅰ)求证:PO平面ABCD

(Ⅱ)求异面直线PBCD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,且是棱的中点,平面与棱交于点.

(1)求证:

(2)若且平面平面求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案