【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分组: , ,…, ,得到的频率分布直方图如图所示.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这名男生身高在以上(含)的人数;
(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.
参考数据:若,则,
, .
【答案】(1)高于全市的平均值(2).
【解析】试题分析:(Ⅰ)利用频率分布直方图进行求解;(Ⅱ)利用频率分布直方图得到后三组的频率,再求出人数即可;(Ⅲ)先确定人中以上的有人,写出随机变量的所有可能取值,利用超几何分布得到每个变量的概率,利用期望公式进行求解.
试题解析:(Ⅰ)由频率分布直方图,经过计算该校高三年级男生平均身高为
,
高于全市的平均值(或者:经过计算该校高三年级男生平均身高为,比较接近全市的平均值).
(Ⅱ)由频率分布直方图知,后三组频率为,人数为,即这名男生身高在以上(含)的人数为人.
(Ⅲ)∵,
∴, .
所以,全市前名的身高在以上,这人中以上的有人.
随机变量可取, , ,
于是
,
,
,
∴.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为(为参数).
(1)求曲线上的点到直线的距离的最大值与最小值;
(2)过点与直线平行的直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,准线为,点在抛物线上,已知以点为圆心, 为半径的圆交于两点.
(Ⅰ)若, 的面积为4,求抛物线的方程;
(Ⅱ)若三点在同一条直线上,直线与平行,且与抛物线只有一个公共点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右有顶点分别是、,上顶点是,圆:的圆心到直线的距离是,且椭圆的右焦点与抛物线的焦点重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)平行于轴的动直线与椭圆和圆在第一象限内的交点分别为、,直线、与轴的交点记为,.试判断是否为定值,若是,证明你的结论.若不是,举反例说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男人,女人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为,求的分布列和.
附表及公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.
(1)求椭圆 C 的方程;
(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com