精英家教网 > 高中数学 > 题目详情
10.在正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为(  )
A.1:1B.1;$\sqrt{2}$C.1:$\sqrt{3}$D.1;2

分析 设出正方体ABCD-A1B1C1D1的棱长,求出正方体的表面积和三棱锥D1-AB1C的表面积即可.

解答 解:设正方体ABCD-A1B1C1D1的棱长为a,
则正方体ABCD-A1B1C1D1的表面积为S2=6a2
且三棱锥D1-AB1C为各棱长均为$\sqrt{2}$a的正四面体,
其中一个面的面积为
S=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$×$\sqrt{2}$a×$\sqrt{2}$a=$\frac{\sqrt{3}}{2}$a2
所以三棱锥D1-AB1C的表面积为:
S1=4×$\frac{\sqrt{3}}{2}$a2=2$\sqrt{3}$a2
所以三棱锥D1-AB1C的体积与正方体ABCD-A1B1C1D1的表面积之比为:
S1:S2=1:$\sqrt{3}$.
故选:C.

点评 本题考查了正方体与三棱锥的表面积公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若点A是圆C:(x+1)2+y2=1上的动点,点P满足$\overrightarrow{CP}$=2$\overrightarrow{CA}$,则点P的轨迹方程是(x+1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=ax+sinx在R上单调增,则a的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x<0\\ 2{(x-1)^2}-1,x≥0\end{array}\right.$.
(1)作出函数f(x)图象的简图,请根据图象写出函数f(x)的单调减区间;
(2)求解方程$f(x)=\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.偶函数y=f(x)的图象与x轴有两个交点,则方程f(x)=0所有的解之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}中an>0,且a1+a2+…+a10=30,则a5+a6=(  )
A.3B.6C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等轴双曲线C的中心在原点,右焦点与抛物线${y^2}=8\sqrt{2}x$的焦点重合,则C的实轴长为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知有一列数:1,3,6,10,15,…,其规律是第1个数是1,第2个数比第1个数大2,第3个数比第2个数大3.第4个数比第3个数大4,…,以此类推.请画出计算这一列数的第100个数的值的程序框图,并写出该算法的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知tanα=3,则
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=1;
(2)sin2α-3sinαcosα+1=1.

查看答案和解析>>

同步练习册答案