精英家教网 > 高中数学 > 题目详情

【题目】

已知△ABC中,角ABC所对的边分别为abc,且3a2ab-2b2=0.

(Ⅰ)若B,求sinC的值;

(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.

【答案】(1) (2)

【解析】试题分析:(1)由3a2ab-2b2=0 3a=2b,即3sin A=2sin B,又B ,从而求出sinC的值;(2)a=2tb=3t,又sin A+3sin C=3sin B,从而可得ct,利用余弦定理先求cos C,进而得到sinC的值.

试题解析:

(Ⅰ)因为3a2ab2b20

(3a2b)(ab)0

故3a2ab-2b2=0,故3sin A=2sin B,故sin A

因为3a=2b,故a<b,故A为锐角,

故sin C=sin(AB)=sin Acos B+cos Asin B.

(Ⅱ)由(Ⅰ)可设,a=2tb=3t,因为sin A+3sin C=3sin B,故a+3c=3b,故ct

故cos C

故sin C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1 ,在△ABC中,AB=BC=2, ∠B=90°,D为BC边上一点,以边AC为对角线做平行四边形ADCE,沿AC将△ACE折起,使得平面ACE ⊥平面ABC,如图2.

(1)在图 2中,设M为AC的中点,求证:BM丄AE;

(2)在图2中,当DE最小时,求二面角A -DE-C的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,ABC的对边分别为abc,已知向量n=(cb-2a),且m·n=0.

(1)求角C的大小;

(2)若点D为边AB上一点,且满足 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·合肥市质检)已知点F为椭圆E (a>b>0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆E有且仅有一个交点M.

(1)求椭圆E的方程;

(2)设直线y轴交于P,过点P的直线l与椭圆E交于不同的两点AB,若λ|PM|2|PA|·|PB|,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ4cos θ0.

(1)求直线l与曲线C的普通方程;

(2)已知直线l与曲线C交于AB两点,设M(20),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系xOy中,射线lyx(x≥0),曲线C1的参数方程为 (α为参数),曲线C2的方程为x2+(y-2)2=4;以原点为极点,x轴的非负半轴为极轴建立极坐标系. 曲线C3的极坐标方程为ρ=8sin θ.

(Ⅰ)写出射线l的极坐标方程以及曲线C1的普通方程;

(Ⅱ)已知射线lC2交于OM,与C3交于ON,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=2sin θ,直线l的参数方程为 (t为参数),若l与C交于A,B两点.

(Ⅰ)求|AB|;

(Ⅱ)设P(1,2),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是的中点.

(1)求证: 平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案