精英家教网 > 高中数学 > 题目详情

【题目】为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:

愿意购买这款电视机

不愿意购买这款电视机

总计

40岁以上

800

1000

40岁以下

600

总计

1200

(1)根据图中的数据,试估计该款电视机的平均使用时间;

(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;

(3)若按照电视机的使用时间进行分层抽样,从使用时间在的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在内的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】(1)7.76;(2)见解析;(3).

【解析】

(1)利用频率分布直方图求出平均数;

(2)依题意填写列联表,计算观测值,对照临界值得出结论;

(3)依题意用列举法求出基本事件数,再计算所求的概率值

(1)依题意,所求平均数为

(2)依题意,完善表中的数据如下所示:

愿意购买该款电视机

不愿意购买该款电视机

总计

40岁以上

800

200

1000

40岁以下

400

600

1000

总计

1200

800

2000

故有99.9%的把握认为愿意购买该款电视机市民的年龄有关;

(3)依题意,使用时间在内的有1台,记为A,使用时间在内的有4台,记为

则随机抽取2台,所有的情况为10种;

其中满足条件的为6种,

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】y=sinx的图象怎样变换可得到函数y=2sin1的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若有且仅有两个整数,使得,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若函数既有一个极小值又有一个极大值,求的取值范围;

3)若存在,使得当时, 的值域是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,过点的直线交抛物线于两点.

(1)为坐标原点,求证:

(2)设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程在平面直角坐标系中,曲线为参数),在以平面直角坐标系的原点为极点轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线.

(1)求曲线的普通方程以及曲线的平面直角坐标方程;

(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的极值点的个数;

(2)若有两个极值点x1,x2(x1<x2),且的最小值

查看答案和解析>>

同步练习册答案