精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).

(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程.

(2)设x1,x2是f′(x)=0的两个根,x3是f(x)的一个零点,且x3≠x1,x3≠x2.

证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后成等差数列,并求x4.

(1)当a=1,b=2时,f(x)=(x-1)2(x-2),

因为f′(x)=(x-1)(3x-5),故f′(2)=1,f(2)=0,

所以f(x)在点(2,0)处的切线方程为y=x-2.

(2)因为f′(x)=3(x-a)(x-),

由于a<b,故a<.

所以f(x)的两个极值点为x=a,x=.

不妨设x1=a,x2

因为x3≠x1,x3≠x2,且x3是f(x)的零点,

故x3=b.

又因为-a=2(b-),

所以x1,x4,x2,x3成等差数列.

所以x4(a+)=

所以存在实数x4满足题意,且x4.

练习册系列答案
相关习题

科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题

已知函数f(x)=4x2mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三第三次月考文科数学卷 题型:选择题

已知函数f(x)=若f(a)=,则a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题

  已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:

    (1)方程f [f (x)]=x一定无实根;

    (2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;

    (3)若a<0,则必存在实数x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;

    正确的序号有          .              

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题

已知函数f(x)=|lg(x-1)|-()x有两个零点x1x2,则有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步练习册答案