精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=(x+1)ln x-2x.

(1)求函数的单调区间;

(2)设h(x)=f′(x)+,若h(x)>k(kZ)恒成立,求k的最大值.

【答案】(1)在(0,+∞)上单调递增.(2)0

【解析】(1)函数的定义域为(0,+∞).

f′(x)=ln x-1,不妨令g(x)=ln x-1,g′(x)=

x>1 ,g′(x)>0,函数g(x)=f′(x)单调递增,又因为f′(x)>f′(1)=0,所以x>1,f′(x)>0,函数f(x)单调递增;

当0<x<1,g′(x)<0,g(x)=f′(x)单调递减,

又因为f′(x)>f′(1)=0,所以0<x<1,f′(x)>0.

函数f(x)单调递增.

所以函数yf(x)在(0,+∞)上单调递增.

(2)h(x)=ln x-1+h′(x)=,设φ(x)=xex-exx2φ′(x)=xex-2xx(ex-2),当x(0,ln 2),φ′(x)<0,函数φ(x)单调递减,

又因为φ(x)<φ(0)=-1<0,所以0<x<ln 2,h′(x)<0,函数h(x)单调递减.

x(ln 2,+∞),φ′(x)>0,函数φ(x)单调递增,又因为φ(x)>φ(ln 2)=2ln 2-2-(ln 2)2,又φ(1)=-1<0,φ(2)=e2-4>0,故存在x0(1,2),使得φ(x)=0,即x0ex0-ex0=0,在(0,x0)上,φ(x)<0,在(x0,+∞)上,φ(x)>0.

h(x)在(0,x0)上递减,在(x0,+∞)上递增.

所以有h(x)≥h(x0)=ln x0-1+,又,所以h(x)≥h(x0)=ln x0-1+=ln x0-1,不妨令M(x)=ln x-1,当x(1,2)时,M′(x)=.

M′(x)=>0恒成立,所以,M(x)是单增函数,又M(1)=0,M(2)=ln 2-<1,

所以有1>h(x0)=ln x0-1>0.

所以k≤0,所以k的最大值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的相异两点,且.

1)若直线,求的值;

2)若直线的垂直平分线交轴与点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点

1)若点的坐标为,求的值;

2)设线段的中点为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

1)当时,求函数的图象在点处的切线方程;

2)讨论函数的单调性;

3)当,且时,证明不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,,侧面底面

)作出平面与平面的交线,并证明平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立y关于x的回归方程;

3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

同步练习册答案