精英家教网 > 高中数学 > 题目详情

【题目】如图,某小区为美化环境,建设美丽家园,计划在一块半径为RR为常数)的扇形区域上,建个矩形的花坛CDEF和一个三角形的水池FCG.其中,O为圆心,,C,G,F在扇形圆弧上,D,E分别在半径OA,OB上,记OGCF,DE分别交于M,N,.

1)求△FCG的面积S关于的关系式,并写出定义域;

2)若R=10米,花坛每平方米的造价是300元,试问矩形花坛的最高造价是多少?(取

【答案】(1) . (2)17320

【解析】

1)利用圆的几何性质证得,利用表示出,由此求得三角形面积的表达式,并求得的取值范围.

2)求得,由此求得矩形面积的表达式,利用辅助角公式,结合三角函数求最值的方法,求得矩形面积的最大值,从而求得最高造价.

1)连接OF,因为,所以,易得,所以.

因为,所以,所以,,

所以.

2)因为,

所以,

所以

.

因为,所以当时,最大.

故矩形花坛的最高造价是元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额(元)如下(四舍五入取整数):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

对这20个数据进行分组,各组的频数如下:

组别

红包金额分组

频数

2

9

3

)写出的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;

)记组红包金额的平均数与方差分别为组红包金额的平均数与方差分别为,试分别比较的大小;(只需写出结论)

)从两组的所有数据中任取2个数据,记这2个数据差的绝对值为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,

(1)求证:cos2+cos2=1;

(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求证:ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (n≥2)个实数组成的n行n列的数表中, 表示第i行第j列的数,记 -1,0,1} (),且r1,r2,…,rn,c1,c2,..,cn,两两不等,则称此表为“n阶H表”,记

H={ r1,r2,…,rn,c1,c2,..,cn}.

(I)请写出一个“2阶H表”;

(II)对任意一个“n阶H表”,若整数,且,求证: 为偶数;

(Ⅲ)求证:不存在“5阶H表”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数.

1)求的解析式;

2)若不等式上恒成立,求的取值范围;

3)若函数恰好有三个零点,求的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

同步练习册答案