精英家教网 > 高中数学 > 题目详情
直线y=x-3与抛物线y2=4x交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为(  )
A、48B、56C、64D、72
分析:依题意联立方程组消去y,进而求得交点的坐标,进而根据|AP|,|BQ|和|PQ|的值求得梯形APQB的面积
解答:精英家教网解:直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,
联立方程组得
y2=4x
y=x-3

消元得x2-10x+9=0,
解得
x=1
y=-2
,和
x=9
y=6

∴|AP|=10,|BQ|=2,|PQ|=8,梯形APQB的面积为48,
故选A.
点评:本题主要考查了抛物线与直线的关系.常需要把直线与抛物线方程联立根据韦达定理找到解决问题的途径.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为1≤
x2y3
≤3
),试列出P(x,y)所满足的条件,并求出相应的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

AnBn分别表示数列{an}和{bn}的前n项和,对任何正整数nan=-,4Bn-12An=13n.

(1)求数列{bn}的通项公式;

(2)设有抛物线列C1C2,…,Cn,…,抛物线Cn(nN*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限.

(3)设集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学预测试卷及最后一讲(解析版) 题型:解答题

由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为),试列出P(x,y)所满足的条件,并求出相应的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列Pn(xn,yn)(n∈N*),点Pn位于直线y=3x+上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

(1)求点Pn的坐标;

(2)设抛物线列C1,C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1)(n∈N*).记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:++…+;

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任意一项an∈S∩T,其中a1是S∩T中的最大数,且-256<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案