精英家教网 > 高中数学 > 题目详情

【题目】已知集合,若对于任意,存在,使得成立,则称集合是“好集合”.给出下列4个集合:①;②;③;④.其中为“好集合”的序号是( )

A. ①②④ B. ②③ C. ③④ D. ①③④

【答案】B

【解析】对于①y= 是以xy轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1y1)∈M,不存在(x2y2)∈M,满足好集合的定义;在另一支上对任意(x1y1)∈M,不存在(x2y2)∈M,使得x1x2+y1y2=0成立,所以不满足好集合的定义,不是好集合.
对于②M={xy|y=ex-2},如图(2)如图红线的直角始终存在,对于任意(x1y1)∈M,存在(x2y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),则Nln2,0),满足好集合的定义,
所以是好集合;正确.
对于③M={xy|y=cosx},如图(3)对于任意(x1y1)∈M,存在(x2y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),满足好集合的定义,所以M是好集合;正确.
对于④M={xy|y=lnx},如图(4)取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是好集合.

所以②③正确.
故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x2y2=1上任意一点P,过点P作两直线分别交圆于AB两点,且∠APB=60°,则|PA|2+|PB|2的取值范围为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点的离心率为的等比中项.

(1)求曲线的方程;

(2)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:

(1)AP∥平面BDM;
(2)AP∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x<0时,
(1)求f(x)的表达式;
(2)判断并证明函数f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若,证明:对任意的实数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)若,且曲线处的切线过原点,求直线的方程;

(2)求的极值;

(3)若函数有两个极值点 ,证明.

查看答案和解析>>

同步练习册答案