【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
【答案】(1)详见解析;(2)存在且为.
【解析】
(Ⅰ)要证明函数不等式(),注意到,因此我们可先研究函数的性质特别是单调性,这可通过导数的性质确定;
(Ⅱ)首先把不等式具体化,即不等式为,注意到特殊情形,时,不等式为,因此的值只有为1或2,因此只要证时,不等式恒成立即可,这仍然通过导数研究函数的单调性证得结论,为了确定导数的正负的方便性,把不等式变为,因此只要研究函数的单调性,求得最小值即可.
试题解析:(Ⅰ)当时,,则 ,
令,则 ,
令,得,故在时取得最小值,
在上为增函数,
,
(Ⅱ) ,
由,得对一切恒成立,
当时,可得,所以若存在,则正整数的值只能取1,2.
下面证明当时,不等式恒成立,
设 ,则 ,
由(Ⅰ) , ,
当时, ;当时, ,
即在上是减函数,在上是增函数,
,
当时,不等式恒成立
所以的最大值是2.
科目:高中数学 来源: 题型:
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 | b | |
乙班 | c | 30 | |
总计105 |
已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是( )
参考公式:
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A.列联表中c的值为30,b的值为35
B.列联表中c的值为15,b的值为50
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若,则”的否命题为:“若则”
B. 若为真命题,为假命题,则均为假命题
C. 命题“若成等比数列,则”的逆命题为真命题
D. 命题“若,则”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为,准线为,三个点, , 中恰有两个点在上.
(1)求抛物线的标准方程;
(2)过的直线交于, 两点,点为上任意一点,证明:直线, , 的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在,,,,,单位:克中,其频率分布直方图如图所示.
Ⅰ按分层抽样的方法从质量落在,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
Ⅱ以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元千克收购;
B.低于2250克的蜜柚以60元个收购,高于或等于2250克的以80元个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位利用周末时间组织职工进行一次“健康之路、携手共筑”徒步走健身活动,有人参加,现将所有参加人员按年龄情况分为,六组,其频率分布直方图如图所示,已知岁年龄段中的参加者有人.
(1)求的值并补全频率分布直方图;
(2)从岁年龄段中采用分层抽样的方法抽取人作为活动的组织者,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为
③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中命题正确的个数是( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,⊥底面,底面为等边三角形,,, ,分别为, 的中点.
(1)求证:平面;
(2)求平面与平面所成二面角的余弦值;
(3)设平面与平面的交线为求证:与平面不平行.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com