精英家教网 > 高中数学 > 题目详情

【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)

若直线,则在平面内,一定不存在与直线平行的直线.

若直线,则在平面内,一定存在无数条直线与直线垂直.

若直线,则在平面内,不一定存在与直线垂直的直线.

若直线,则在平面内,一定存在与直线垂直的直线.

【答案】②④

【解析】试题分析:时,在平面内存在与直线平行的直线.若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.当直线为平面的交线时,在平面内一定存在与直线垂直的直线.当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面是正方形的四棱锥P﹣ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B﹣PC﹣D的大小为 时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)数列满足:

1)若数列是等差数列,求证:数列是等差数列;

2)若数列都是等差数列,求证:数列从第二项起为等差数列;

3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在[a,b]上的函数f(x)=x3﹣3x2+1的值域为[﹣3,1],则b﹣a的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)当1<a<4时,函数f(x)在[2,4]上的最小值为ln ,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国南宋时期的数学家秦九韶提出的一种多项式f(x)=anxn+an1xn1+…+a1x+a0的求值问题的算法.现按照这个程序执行函数f (x)=3x4﹣2x3﹣6x﹣17的计算,若输入的值x0=2,则输出的v的值是(

A.0
B.2
C.3
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为 ,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.

(1)将y表示成θ的函数关系式,并写出定义域;
(2)求矩形PNMQ的面积取得最大值时 的值;
(3)求矩形PNMQ的面积y≥ 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mex﹣x﹣1(其中e为自然对数的底数,),若f(x)=0有两根x1 , x2且x1<x2 , 则函数y=(e ﹣e )( ﹣m)的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

同步练习册答案