精英家教网 > 高中数学 > 题目详情
已知f(x)=sin(ωx+
π
3
)
(ω>0),f(
π
6
)=f(
π
3
),且f(x)在区间(
π
6
π
3
)
上有最小值,无最大值,则ω=
 
分析:根据f(
π
6
)=f(
π
3
),且f(x)在区间(
π
6
π
3
)
上有最小值,无最大值,确定最小值时的x值,然后确定ω的表达式,进而推出ω的值.
解答:精英家教网解:如图所示,
∵f(x)=sin(ωx+
π
3
)

且f(
π
6
)=f(
π
3
),
又f(x)在区间(
π
6
π
3
)
内只有最小值、无最大值,
∴f(x)在
π
6
+
π
3
2
=
π
4
处取得最小值.
π
4
ω+
π
3
=2kπ-
π
2
(k∈Z).
∴ω=8k-
10
3
(k∈Z).
∵ω>0,
∴当k=1时,ω=8-
10
3
=
14
3

当k=2时,ω=16-
10
3
=
38
3
,此时在区间(
π
6
π
3
)
内已存在最大值.
故ω=
14
3

故答案为:
14
3
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查逻辑思维能力,分析判断能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )
A、与g(x)的图象相同
B、与g(x)的图象关于y轴对称
C、向左平移
π
2
个单位,得到g(x)的图象
D、向右平移
π
2
个单位,得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,则f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的图象与y=-1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinπx.
(1)设g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)设h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此时x值的集合.

查看答案和解析>>

同步练习册答案