精英家教网 > 高中数学 > 题目详情
已知圆C的圆心在直线xy4=0上,并且经过两圆C1x2+y24x3=0x2+y24y3=0的交点,求圆C的方程.

 

答案:
解析:

法一:设圆C的方程为(xa)2+(y6)2=r2,求出C1C2的交点AB的坐标,由及圆心C在直线xy4=0.可得关于ab的方程组,解出ab,进而求得r2=,得圆C的方程.

法二:应用经过两圆交点的圆系方程求解,设圆C的方程为x2+y24x3+(x2+y24y3)=0

 (1+)x2+(1+)y24x4y3(1+)=0,其圆心在直线xy4=0上,所以有,解得,代入方程可得到所求圆的方程是x2+y26x+2y3=0.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的圆心在直线x-3y=0上,且圆C与x轴相切,若圆C截直线y=x得弦长为2
7
,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线l:ax-y-2=0(a>0)与圆C相交于A、B两点,求实数a的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线y=2x上,且与直线l:x+y+1=0相切于点P(-1,0).
(Ⅰ)求圆C的方程;
(Ⅱ)若A(1,0),点B是圆C上的动点,求线段AB中点M的轨迹方程,并说明表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线2x-y-3=0上,且经过点A(5,2),B(3,2),
(1)求圆C的标准方程;
(2)直线l过点P(2,1)且与圆C相交的弦长为2
6
,求直线l的方程.
(3)设Q为圆C上一动点,O为坐标原点,试求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线l1:x-y-1=0上,与直线l2:4x+3y+14=0相切,且截得直线l3:3x+4y+10=0所得弦长为6,求圆C的方程.

查看答案和解析>>

同步练习册答案