精英家教网 > 高中数学 > 题目详情

【题目】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.

(1)求该配送站每天需支付快递员的总工资最小值;

(2)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?

(参考数据: .)

【答案】(1)2560;(2)新手快递员至少连续5 个月被评为“优秀”,日工资会超过老快递员

【解析】试题分析:(1)安排新手快递员人,老快递员人,根据题目列出二者所满足的关系式,是二元不等式组设目标函数为,画出可行域,分析图像得到最值即可,注意最值点必须是整数点;(2)设新手快递员连续个月被评为优秀,根据题意列出式子得到,解出不等式即可。

(1)设安排新手快递员人,老快递员人,则有,即,该配送站每天需支付快递员总工资为.作出可行域如图所示.

作直线,平移可得到一组与平行的直线,由题设是可行域内的整点的横、纵坐标.在可行域内的整点中,点使取最小值,即当过点时, 最小,

(元),即该配送站每天需支付快递员的总工资最小值为2560元.

(2)设新手快递员连续个月被评为“优秀”,日工资会超过老员工,则由题意可得.转化得,两边求对数可得,所以 ,又因为,所以最小为5,即新手快递员至少连续5 个月被评为“优秀”,日工资会超过老快递员.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如表对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回归直线方程;
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(2)试预测广告费支出为10万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0的距离的一半.
(1)求m的值;
(2)判断直线l与圆 的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期为π. (Ⅰ)当x∈[0, ]时,求f(x)的最大值;
(Ⅱ)请用“五点作图法”画出f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成组第,第,第,第,第,得到的频率分布直方图如图所示,已知第组有人.

(1)求该组织的人数;

(2)若在第组中用分层抽样的方法抽取名志愿者参加某社区的宣传活动,应从第组各抽取多少名志愿者?

(3)在(2)的条件下,该组织决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中,,现沿对角线折起,折起后使的余弦值为

(1)求证:平面平面

(2)若的中点,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的焦距为2,且过点.

(1)求椭圆的方程;

(2)若点分别是椭圆的左右顶点,直线经过点且垂直与轴,点是椭圆上异于的任意一点,直线于点.

①设直线的斜率为,直线的斜率为,求证:为定值;

②设过点垂直于的直线为 ,求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案