【题目】已知函数, .
(1)求函数的定义域;
(2)判断函数的奇偶性,并说明理由;
(3)判断函数在区间上的单调性,并加以证明.
【答案】(1)(2)函数F (x)是偶函数(3)在区间(0,1)上是减函数
【解析】试题分析:(1)由 可得函数f(x)+g(x)的定义域;
(2)根据F(﹣x)=F(x),可得:函数F (x)是偶函数;
(3)F(x)=f(x)+g(x)在区间(0,1)上是减函数,作差可证明结论.
试题解析:
(1)要使函数有意义,则,
解得,即函数的定义域为{x |};
(2),其定义域关于原点对称,
又,∴函数F (x)是偶函数.
(3)在区间(0,1)上是减函数.
设x1、x2∈(0,1),x1 < x2,则
,
∵x1、x2∈(0,1),x1 < x2
∴,即
∵x1、x2∈(0,1),∴,
∴,故,即,
故在区间(0,1)上是减函数.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 中,以 为极点, 轴的正半轴为极轴,建立极坐标系.曲线 的极坐标方程为 ,曲线 的参数方程为 ( 为参数), .
(Ⅰ)求曲线 的直角坐标方程,并判断该曲线是什么曲线?
(Ⅱ)设曲线 与曲线 的交点为 , , ,当 时,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+3x2-9x .
(I)求f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[-4,c]上的最小值为-5,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的半焦距为 ,原点 到经过两点 的直线的距离为 .
(Ⅰ)求椭圆 的离心率;
(Ⅱ)如图, 是圆 的一条直径,若椭圆 经过 两点,求椭圆 的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=cos2x的图象向左平移 个单位,得到函数y=f(x)cosx的图象,则f(x)的表达式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域为R的奇函数f(x)满足f(1+x)=﹣f(x),则下列结论: ①f(x)的图象关于点 对称;
②f(x)的图象关于直线 对称;
③f(x)是周期函数,且2个它的一个周期;
④f(x)在区间(﹣1,1)上是单调函数.
其中正确结论的序号是 . (填上你认为所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.
【答案】(1)奇函数(2)增函数(3)
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数为奇函数.证明如下:
定义域为
又
为奇函数
(2)函数在(-1,1)为单调函数.证明如下:
任取,则
,
即
故在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得:
所以,原不等式的解集为
【点睛】
(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。
【题型】解答题
【结束】
22
【题目】已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时, .
(Ⅰ)求函数f(x)在(-1,1)上的解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性;
(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,( )
A.λ先变小再变大
B.当M为线段BC中点时,λ最大
C.λ先变大再变小
D.λ是一个定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com