精英家教网 > 高中数学 > 题目详情
16.函数f(x)=tan(3x+φ)的图象的一个对称中心是($\frac{π}{4}$,0),其中0<φ<$\frac{π}{2}$,试求函数f(x)的单调区间.

分析 根据正切函数的对称性,求出φ的值,然后利用正切函数的单调性的性质进行求解即可.

解答 解:∵f(x)=tan(3x+φ)的图象的一个对称中心是($\frac{π}{4}$,0),
∴3×$\frac{π}{4}$+φ=$\frac{kπ}{2}$,得φ=$\frac{kπ}{2}$-$\frac{3π}{4}$,
∵0<φ<$\frac{π}{2}$,
∴当k=2时,φ=$\frac{kπ}{2}$-$\frac{3π}{4}$=π-$\frac{3π}{4}$=$\frac{π}{4}$,
即f(x)=tan(3x+$\frac{π}{4}$),
由kπ-$\frac{π}{2}$<3x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z,
得$\frac{kπ}{3}$-$\frac{π}{4}$<x<$\frac{kπ}{3}$+$\frac{π}{12}$,k∈Z,
即函数的单调递增区间为($\frac{kπ}{3}$-$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{π}{12}$),k∈Z.

点评 本题主要考查正切函数的性质,根据正切函数的对称性求出φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设f(x)是任意一个函数,其定义域在x轴上关于原点对称
(1)判断下列函数的奇偶性:F(x)=$\frac{1}{2}$[f(x)+f(-x)],G(x)=$\frac{1}{2}$[f(x)-f(-x)];
(2)求证:f(x)一定可以表示成一个奇函数与一个偶函数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某几何体的三视图如图所示,其中A1M:AM=7:5.则此几何体的体积等于(  )
A.55B.62C.65D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知{$\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}$}是空间的一个单位正交基地,且$\overrightarrow{OA}=\overrightarrow{i}+3\overrightarrow{k}$,$\overrightarrow{OB}=2\overrightarrow{j}$,则△OAB(O为坐标原点)的面积是(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{\sqrt{35}}{2}$D.$\sqrt{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若tanα=2,则1+sinαcosα=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上.
(1)判断f(x)与g(x)的奇偶性;
(2)设h(x)=($\frac{1}{3}$)f(x),是否存在x1∈R,x2∈(0,1],使h(x1)=g(x2)?若存在,求x1,x2的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线y=x+b(b>0)上存在唯一一点A,满足点A到两点F1(-1,0),F2(1,0)的距离之和等于2$\sqrt{2}$,则b=$\sqrt{3}$,点A的坐标为($-\frac{2\sqrt{3}}{3},\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.利用正弦线比较sin1,sin1.2,sin1.5的大小关系是(  )
A.sin1>sin1.2>sin1.5B.sin1>sin1.5>sin1.2
C.sin1.5>sin1.2>sin1D.sin1.2>sin1>sin1.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x-2y的最小值为-4.

查看答案和解析>>

同步练习册答案