精英家教网 > 高中数学 > 题目详情

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

(1)   (2)

解析试题分析:(1) 由题可知:,解得
所求双曲线方程为     
(2)设过点的直线方程为:, 
联立方程组   ,消去得:  , 
,则    ①   
得:,②
,由, 及得:
,即 ,③   
由②,③得 ,
,④
由①,④得:
考点:双曲线的标准方程.
点评:本题考查双曲线方程的求法,考查双曲线的离心率和渐近线方程的求法.解题时要认真审
题,仔细解答,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,求△面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线过定点,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)直线交于两点,以为切点分别作的切线,两切线交于点.
①求证:;②若直线交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率且点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

方程的曲线是焦点在上的椭圆 ,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.

(1)求椭圆的方程;
(2)如图7,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

查看答案和解析>>

同步练习册答案