精英家教网 > 高中数学 > 题目详情

【题目】设函数 的极值点.
(1)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;
(2)若f(x)=0恰有两解,求实数c的取值范围.

【答案】
(1)解:求导函数,可得

∵x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,

∴f′(1)=0,f′(2)=

∴b=﹣ ,c=

∴函数f(x)的解析式为


(2)解: (x>0)

①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0,即

②若0<c<1,则f极大(x)=f(c)=clnc+ ,f极小(x)=f(1)=

∵b=﹣1﹣c,∴f极大(x)=clnc ,f极小(x)=

∴f(x)=0不可能有两解

③若c≥1,则f极小(x)=clnc ,f极大(x)= ,∴f(x)=0只有一解

综上可知,实数c的取值范围为


【解析】(1)求导函数,利用x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,可得f′(1)=0,f′(2)= ,从而可求函数f(x)的解析式;(2) (x>0),分类讨论:①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0;②若0<c<1,则f极大(x)=clnc ,f极小(x)= ;③若c≥1,则f极小(x)=clnc ,f极大(x)= ,由此可确定实数c的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知
(1)求的值;
(2)当x∈(﹣t,t](其中t∈(﹣1,1),且t为常数)时,f(x)是否存在最小值,如果存在求出最小值;如果不存在,请说明理由;
(3)当f(x﹣2)+f(4﹣3x)≥0时,求满足不等式f(x﹣2)+f(4﹣3x)≥0的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点P(﹣3 , 4),它的渐近线方程为y=±x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2,0), =(1,4).

(Ⅰ)若向量k+2平行,求实数k的值;

(Ⅱ)若向量k+2的夹角为锐角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为 , 焦距为2 , 过点D(1,0)且不过点E(2,1)的直线l与椭圆C交于A,B两点,直线AE与直线x=3交于点M.
(1)求椭圆C的标准方程;
(2)若AB垂直于x轴,求直线MB的斜率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax3|xa|aR

1)若a=-1,求函数yf(x) (x [0,+∞))的图象在x1处的切线方程;

2)若g(x)x4,试讨论方程f(x)g(x)的实数解的个数;

3)当a0时,若对于任意的x1 [aa2],都存在x2 [a2,+∞),使得f(x1)f(x2)1024,求满足条件的正整数a的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

同步练习册答案