【题目】设函数 的极值点.
(1)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;
(2)若f(x)=0恰有两解,求实数c的取值范围.
【答案】
(1)解:求导函数,可得
∵x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,
∴f′(1)=0,f′(2)=
∴
∴b=﹣ ,c=
∴函数f(x)的解析式为 ;
(2)解: (x>0)
①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0,即
∴
②若0<c<1,则f极大(x)=f(c)=clnc+ ,f极小(x)=f(1)=
∵b=﹣1﹣c,∴f极大(x)=clnc ,f极小(x)=
∴f(x)=0不可能有两解
③若c≥1,则f极小(x)=clnc ,f极大(x)= ,∴f(x)=0只有一解
综上可知,实数c的取值范围为 .
【解析】(1)求导函数,利用x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x﹣4y+4=0,可得f′(1)=0,f′(2)= ,从而可求函数f(x)的解析式;(2) (x>0),分类讨论:①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0;②若0<c<1,则f极大(x)=clnc ,f极小(x)= ;③若c≥1,则f极小(x)=clnc ,f极大(x)= ,由此可确定实数c的取值范围.
科目:高中数学 来源: 题型:
【题目】已知
(1)求的值;
(2)当x∈(﹣t,t](其中t∈(﹣1,1),且t为常数)时,f(x)是否存在最小值,如果存在求出最小值;如果不存在,请说明理由;
(3)当f(x﹣2)+f(4﹣3x)≥0时,求满足不等式f(x﹣2)+f(4﹣3x)≥0的x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线过点P(﹣3 , 4),它的渐近线方程为y=±x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的离心率为 , 焦距为2 , 过点D(1,0)且不过点E(2,1)的直线l与椭圆C交于A,B两点,直线AE与直线x=3交于点M.
(1)求椭圆C的标准方程;
(2)若AB垂直于x轴,求直线MB的斜率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+|x-a|,aR.
(1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程;
(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com