9£®ÒÑÖªÏòÁ¿$\overrightarrow m$=£¨2cos¦Øx£¬1£©£¬$\overrightarrow n$=£¨$\sqrt{3}sin¦Øx$-cos¦Øx£¬a£©£¬ÆäÖУ¨x¡ÊR£¬¦Ø£¾0£©£¬º¯Êýf£¨x£©=$\overrightarrow m•\overrightarrow n$µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨1£©Çó¦Ø£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨3£©Èç¹ûf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{12}$]ÉϵÄ×îСֵΪ$\sqrt{3}$£¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍ¶þ±¶½Ç¹«Ê½¼°Á½½Ç²îµÄÕýÏÒ¹«Ê½£¬½áºÏÕýÏÒº¯ÊýµÄÖÜÆÚ¹«Ê½£¬¼´¿ÉµÃµ½ËùÇó£»
£¨2£©ÓÉÕýÏÒº¯ÊýµÄÔöÇø¼ä£¬½â²»µÈʽ¼´¿ÉµÃµ½ËùÇó£»
£¨3£©ÓÉxµÄ·¶Î§£¬¿ÉµÃ2x-$\frac{¦Ð}{6}$µÄ·¶Î§£¬½áºÏÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¼´¿ÉµÃµ½×îСֵ£¬½ø¶øµÃµ½aµÄÖµ£®

½â´ð ½â£º£¨1£©ÏòÁ¿$\overrightarrow m$=£¨2cos¦Øx£¬1£©£¬$\overrightarrow n$=£¨$\sqrt{3}sin¦Øx$-cos¦Øx£¬a£©£¬
f£¨x£©=$\overrightarrow m•\overrightarrow n$=2$\sqrt{3}$sin¦Øxcos¦Øx-2cos2¦Øx+a
=$\sqrt{3}$sin2¦Øx-cos2¦Øx+a-1
=2sin£¨2¦Øx-$\frac{¦Ð}{6}$£©+a-1£¬
T=$\frac{2¦Ð}{2¦Ø}$=¦Ð£¬Ôò¦Ø=1£»
£¨2£©f£¨x£©=2sin£¨2x-$\frac{¦Ð}{6}$£©+a-1£¬
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$£¼2x-$\frac{¦Ð}{6}$£¼2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
¿ÉµÃk¦Ð-$\frac{¦Ð}{6}$£¼x£¼k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ£¬
¼´Óк¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨k¦Ð-$\frac{¦Ð}{6}$£¬k¦Ð+$\frac{¦Ð}{3}$£©£¬k¡ÊZ£»
£¨3£©ÓÉx¡Ê[-$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{12}$]£¬
2x-$\frac{¦Ð}{6}$¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{2¦Ð}{3}$]£¬Ôòsin£¨2x-$\frac{¦Ð}{6}$£©¡Ê[-$\frac{\sqrt{3}}{2}$£¬1]£¬
¼´ÓÐf£¨x£©µÄ×îСֵΪ2¡Á£¨-$\frac{\sqrt{3}}{2}$£©+a-1=$\sqrt{3}$£¬
½âµÃa=1+2$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²é¶þ±¶½Ç¹«Ê½ºÍÁ½½Ç²îµÄÕýÏÒ¹«Ê½µÄÔËÓã¬Í¬Ê±¿¼²éÖÜÆÚ¹«Ê½ºÍÕýÏÒº¯ÊýµÄµ¥µ÷Çø¼äºÍÖµÓò£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®É躯Êýy=f£¨x£©£¨x¡ÊR£¬ÇÒx¡Ù0£©¶ÔÈÎÒâµÄ·ÇÁãʵÊýx£¬y£¬¶¼ÓÐf£¨xy£©=f£¨x£©+f£¨y£©³ÉÁ¢£®
£¨1£©ÇóÖ¤£ºf£¨1£©=f£¨-1£©=0£¬ÇÒf£¨$\frac{1}{x}$£©=-f£¨x£©£¨x¡Ù0£©£»
£¨2£©ÅжÏf£¨x£©µÄÆæżÐÔ£»
£¨3£©Èôf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬½â²»µÈʽf£¨$\frac{1}{x}$£©-f£¨2x-1£©¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Óöþ·Ö·¨Çóº¯Êýf£¨x£©=2x-x3µÄÁãµã£¬ÒÔÏÂËĸöÇø¼äÖУ¬¿ÉÒÔ×÷ΪÆðʼÇø¼äµÄÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨1£¬2£©C£®£¨2£¬3£©D£®£¨3£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®»­³öº¯Êýy=|x2-1|µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éè$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$Êǵ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{a}•\overrightarrow{b}$=0£¬Ôò£¨$\overrightarrow{a}+\overrightarrow{c}$£©•£¨$\overrightarrow{b}+2\overrightarrow{c}$£©µÄ×îСֵΪ2-$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©ºÍ$\overrightarrow{b}$=£¨-$\sqrt{3}$£¬1£©£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{5¦Ð}{6}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®»­³öº¯Êýy=|x2-2x-8|µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¦ËΪʵÊý£¬ÏòÁ¿$\overrightarrow{a}$=£¨1-2¦Ë£¬-1£©£¬$\overrightarrow{b}$=£¨1£¬2£©£¬Èô$\overrightarrow{a}¡Í\overrightarrow{b}$£¬Ôò¦ËµÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®$\frac{1}{2}$C£®-$\frac{3}{4}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈçͼÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=BC=2£¬AA1=1£¬EΪBC±ßÖе㣮
£¨1£©ÇóÖ¤£ºBD1¡ÎƽÃæC1DE£»
£¨2£©ÇóÈýÀâ׶D1-DBC1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸