【题目】已知函数在处取得极小值.
(1)求实数的值;
(2)设,其导函数为,若的图象交轴于两点且,设线段的中点为,试问是否为的根?说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数的图象的两相邻对称轴间的距离为.
(1)求的值;
(2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率,点在椭圆上.
(1)求椭圆的标准方程;
(2)设点是椭圆上一点,左顶点为,上顶点为,直线与轴交于点,直线与轴交于点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球.
(1)若从中一次性(任意)摸出2个球,求恰有一个黑球和一个红球的概率;
(2)若从中任取一个球给小朋友甲,然后再从中任取一个球给小朋友乙,求甲、乙两位小朋友拿到的球中恰好有一个黑球的概率.
(3)若从中连续取两次,每次取一球后放回,求取出的两个球恰好有一个黑球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:
潜伏期(单位:天) | ||||||||
人 数 | 60岁及以上 | 2 | 5 | 8 | 7 | 5 | 2 | 1 |
60岁以下 | 0 | 2 | 2 | 4 | 9 | 2 | 1 |
(1)估计该地区500名患者中60岁以下的人数;
(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);
(3)从样本潜伏超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com