(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.
(Ⅰ)证明:MN∥平面ABCD;
(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.
(Ⅰ)见解析;(Ⅱ)所求二面角A—MN—Q的平面角的余弦值为.
【解析】第一问在平面ABCD中找到直线BD平行于MN,利用线面平行的判定定理可以证明;第二问则借助空间向量工具,建立合适的空间坐标系,利用向量求出夹角。
解:(Ⅰ)如图连接BD.
∵M,N分别为PB,PD的中点,
∴在PBD中,MN∥BD.
又MN平面ABCD,
∴MN∥平面ABCD;
(Ⅱ)如图建系:
A(0,0,0),P(0,0,),M(,,0),
N(,0,0),C(,3,0).
设Q(x,y,z),则.
∵,∴.
由,得:. 即:.
对于平面AMN:设其法向量为.
∵.
则. ∴.
同理对于平面AMN得其法向量为.
记所求二面角A—MN—Q的平面角大小为,
则.
∴所求二面角A—MN—Q的平面角的余弦值为.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com