精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为直角梯形,,点分别为的中点,且平面平面.

1)求证:平面.

2)若,求直线与平面所成角的正弦值.

【答案】1)见解析(2

【解析】

1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;

2)过点做平面的垂线,以为原点,分别以轴建立空间直角坐标系,利用空间向量法求出线面角;

解:(1)∵,点的中点,∴,又∵平面平面,平面平面平面

平面,又平面,∴

又∵分别为的中点,

,∴

平面平面

平面.

2)过点做平面的垂线,以为原点,分别以轴建立空间直角坐标系,∵,∴

设平面的法向量为

,得,令,得

∴直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:

,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.

1)当时,判断该项举措能否获利?如果能获利,求出最大利润;

如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?

2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,△PCD为正三角形,平面PCD⊥平面ABCDEPC的中点.

1)证明:AP∥平面EBD

2)证明:BEPC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

1)由频率分布直方图估计该校高三年级男生身高的中位数;

2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点

1)求椭圆的方程;

2)过点轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P40)的动直线与抛物线C交于点AB,且(点O为坐标原点).

1)求抛物线C的方程;

2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQBQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且.记动圆圆心Q的轨迹为曲线C.

1)求C的方程,并说明C是什么曲线?

2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于MN两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案