精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)
分析:利用切线与直线y=4x-1平行,得到切线斜率为4,然后利用导数的几何意义求切点坐标.
解答:解:因为f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,所以切线斜率k=4.
函数f(x)的导数f'(x)=3x2+1,由f'(x)=3x2+1=4,得x2=1,解得x=1或x=-1,
所以f(1)=0,f(-1)=-4,
即切点坐标为(1,0)或(-1,-4).
故答案为:(1,0)或(-1,-4).
点评:本题主要考查导数的几何意义,利用切线和直线平行,得到切线斜率与直线的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案