精英家教网 > 高中数学 > 题目详情
10.计算下列各式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$.

分析 (1)利用指数式性质、运算法则求解.
(2)利用对数性质、运算法则求解.

解答 解:(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
=4${a}^{\frac{2}{3}+\frac{1}{2}-\frac{1}{6}}{b}^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}$
=4a.
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$
=lg$\sqrt{2}$(lg2+lg5)+$\sqrt{(lg\sqrt{2}-1)^{2}}$
=lg$\sqrt{2}+1-lg\sqrt{2}$
=1.

点评 本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y都是正数,且lnx+lny=ln(x+y),则4x+y的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在抛物线y=4x2上有一点P,使这点到直线y=4x-5的距离最短,求该点P坐标和最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.半径为2m的圆中,$\frac{π}{3}$的圆心角所对的弧的长度为$\frac{2π}{3}$ m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x2+2x-1在[0,3]上最小值为(  )
A.0B.-4C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.二次函数y=ax2+x+1(a>0)的图象与x轴两个交点的横坐标分别为x1,x2
(1)证明:(1+x1)(1+x2)=1;
(2)证明:x1<-1,x2<-1;
(3)若x1,x2满足不等式|lg$\frac{{x}_{1}}{{x}_{2}}$|≤1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知|2x-1|=a有两个不等实根,则实数a的范围是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线的一个焦点为$({2\sqrt{5},0})$,且渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的标准方程为$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案