精英家教网 > 高中数学 > 题目详情
定义max{a,b}=,已知实数x,y满足|x|≤1,|y|≤1,设z=max{x+y,2x-y},则z的取值范围是( )
A.[-,2]
B.[,2]
C.[,3]
D.[-,3]
【答案】分析:本题属于线性规划问题,先找出可行域,即四边形ABCD上及其内部,(x+y)与(2x-y)相等的分界线-x+2y=0,令z1=x+y,点(x,y)在四边形ABCD上及其内部,求得z1范围;令z2=2x-y,点(x,y)在四边形ABEF上及其内部(除AB边)求得z2范围,将这2个范围取并集可得答案.
解答:解:∵(x+y)-(2x-y)=-x+2y,

直线-x+2y=0
将约束条件|x|≤1,|y|≤1,所确定的平面区域分为两部分.如图,

令z1=x+y,点(x,y)在四边形ABCD上及其内部,求得-≤z1≤2;
令z2=2x-y,点(x,y)在四边形ABEF上及其内部(除AB边),求得-≤z2≤3.
综上可知,z的取值范围为[-,3].
故选D.
点评:表面上看约束条件和目标函数都是静态的,实际上二者都是动态变化的,目标函数是z=x+y还是z=2x-y并没有明确确定下来,直线-x+2y=0又将原可行域分为两部分.本题看似风平浪静,实际暗藏玄机,化动为静,在静态状态下,从容破解问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义max{a,b}=
a(a≥b)
b(a<b)
,已知实数x,y满足|x|≤1,|y|≤1,设z=max{x+y,2x-y},则z的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是
②③⑤
②③⑤
.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②函数y=f(x)的图象与x=a(a∈R)的交点个数只能为0或1;
f(x)=lg(x+
x2+1
)
是定义在R上的奇函数;
④若函数f(x)在(-∞,0],(0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
⑤定义max(a,b)=
a,(a≥b)
b,(a<b)
,则f(x)=max(x+1,4-2x)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义max(a,b)=
aa≥b
ba<b
,已知x、y满足条件
x+2≥0
y≥0
x+y≤2
,若z=max(3x-y,4x-2y),则z的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义max{a,b}=
a,a≥b
b,a<b
,设实数x,y满足约束条件
|x|≤2
|y|≤2
,z=max{2x-y,3x+y}
,则z的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义max{a,b,c}为a、b、c中的最大者,令M=max{|1+a+2b|,|1+a-2b|,|2+b|},则对任意实数a,b,M的最小值是(  )

查看答案和解析>>

同步练习册答案