【题目】已知向量 =(cosx,sinx), =( sinx,sinx),x∈R设函数f(x)= ﹣
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[0, ]上的最大值和最小值.
【答案】
(1)解:由向量 =(cosx,sinx), =( sinx,sinx),x∈R,
得f(x)= ﹣ =
= .
∴函数f(x)的最小正周期T= ;
(2)解:当x∈[0, ]时, ,
由正弦曲线y=sinx在[ , ]上的图象可知
当 即 时f(x)取最大值1.
当 即x=0时f(x)取最小值 .
函数f(x)在[0, ]上的最大值和最小值分别为1, .
【解析】(1)利用两个向量的数量积公式,两角和的正弦公式,求出函数f(x)=sin(2x﹣ ),从而得到f(x)的最小正周期;(2)由x的范围求得相应的范围,再由正弦曲线y=sinx在[ , ]上的图象进一步求得f(x)在[0, ]上的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100〕后画出如图所示的频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若能构成映射,下列说法正确的有 ( )
(1)A中的任一元素在B中必须有像且唯一;
(2)A中的多个元素可以在B中有相同的像;
(3)B中的多个元素可以在A中有相同的原像;
(4)像的集合就是集合B.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为落实《课标》所倡导的课程理念,切实提高学生的综合素质,某校高二年级开设“趣味数学”、“趣味物理”、“趣味化学”3门任意选修课程,供年级300位文科生自由选择2门(不可多选或少选),选课情况如下表:
(Ⅰ)为了解学生选课情况,现采用分层抽样方法抽取了三科作业共50本,统计发现“趣味物理”有18本,试根据这一数据估计, 的值;
(Ⅱ)为方便开课,学校要求, ,计算的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)当时,求函数的极小值;
(Ⅱ)设定义在上的函数在点处的切线方程为:,当时,若在内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求证:AC⊥BC1
(3)求直线AB1与平面BB1C1C所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,函数 ,且图象上一个最高点为与最近的一个最低点的坐标为 .
(Ⅰ)求函数的解析式;
(Ⅱ)设为常数,判断方程在区间上的解的个数;
(Ⅲ)在锐角中,若,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)的定义域为[﹣4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com