精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1ab0),A(﹣a0),B0,﹣b),PC上位于第一象限的动点,PAy轴于点EPBx轴于点F.

1)探究四边形AEFB的面积是否为定值,说明理由;

2)当△PEF的面积达到最大值时,求点P的坐标.

【答案】1)面积为定值,详见解析(2

【解析】

1)设,写出直线方程求出坐标,计算面积可得定值;

2)求出到直线的距离,由(1)知面积最大时,面积最大,从而只要最大即可,,由在椭圆上,利用基本不等式可得的最大值,从而得出结论.

1)设Px0y0),四边形AEFB的面积为定值,证明如下:

PA的方程为,可得,故

同理可得,

从而四边形AEFB的面积为ab

所以四边形AEFB的面积为ab.

2)由题设知直线ABbx+ay+ab0

PAB的距离为d,则

由(1)可知,当且仅当△ABP的面积最大时,△PEF的面积最大,所以当d取最大值时,△PEF的面积最大,

由于PC上,故,可得

所以

当且仅当,即时等号成立,

所以点P的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB90°BEBCFCE的中点,

1)求证:AE∥平面BDF

2)求证:平面BDF⊥平面ACE

32AEEB,在线段AE上找一点P,使得二面角PDBF的余弦值为,求P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中取两个定点,再取两个动点,且.

(1)求直线的交点的轨迹的方程;

(2)的直线与轨迹交于两点,过点轴且与轨迹交于另一点为轨迹的右焦点,若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】α是给定的平面,AB是不在α内的任意两点,则(

A.α内存在直线与直线AB异面

B.α内存在直线与直线AB相交

C.α内存在直线与直线AB平行

D.存在过直线AB的平面与α垂直

E.存在过直线AB的平面与α平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,都垂直于平面,且.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右两个顶点分别是A1,A2,左、右两个焦点分别是F1,F2,P是双曲线上异于A1,A2的任意一点,给出下列命题,其中是真命题的有(

A.

B.直线的斜率之积等于定值

C.使得为等腰三角形的点有且仅有8

D.的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是边长为2的等边三角形,,当三棱锥体积最大时,其外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某北方村庄4个草莓基地,采用水培阳光栽培方式种植的草莓个大味美,一上市便成为消费者争相购买的对象.光照是影响草莓生长的关键因素,过去50年的资料显示,该村庄一年当中12个月份的月光照量X(小时)的频率分布直方图如下图所示(注:月光照量指的是当月阳光照射总时长).

1)求月光照量(小时)的平均数和中位数;

2)现准备按照月光照量来分层抽样,抽取一年中的4个月份来比较草莓的生长状况,问:应在月光照量的区间内各抽取多少个月份?

3)假设每年中最热的5678910月的月光照量是大于等于240小时,且678月的月光照量是大于等于320小时,那么,从该村庄2018年的56789106个月份之中随机抽取2个月份的月光照量进行调查,求抽取到的2个月份的月光照量(小时)都不低于320的概率.

查看答案和解析>>

同步练习册答案