分析 以底面正方形ABCD中心O为原点,以OA为x轴,OB为y轴,OV为z轴,建立空间直角坐标系,利用向量法能求出异面直线BE与DF所成角的正切值.
解答 解:以底面正方形ABCD中心O为原点,以OA为x轴,OB为y轴,OV为z轴,
建立空间直角坐标系,
则A($\sqrt{2}$,0,0),B(0,$\sqrt{2}$,0),C(-$\sqrt{2}$,0,0),D(0,-$\sqrt{2}$,0),
V(0,0,4),E($\frac{\sqrt{2}}{2}$,0,2),F(-$\frac{\sqrt{2}}{2}$,0,2),
$\overrightarrow{BE}$=($\frac{\sqrt{2}}{2},-\sqrt{2},2$),$\overrightarrow{DF}$=(-$\frac{\sqrt{2}}{2}$,$\sqrt{2},2$),
设向量BE和DF成角为θ,
cosθ=|cos<$\overrightarrow{BE},\overrightarrow{DF}$>|=|$\frac{\overrightarrow{BE}•\overrightarrow{DF}}{|\overrightarrow{BE}|•|\overrightarrow{DF}|}$|=|$\frac{-\frac{1}{2}-2+4}{\sqrt{\frac{1}{2}+2+4}•\sqrt{\frac{1}{2}+2+4}}$|=$\frac{3}{13}$,
sinθ=$\sqrt{1-(\frac{3}{13})^{2}}$=$\frac{4\sqrt{10}}{13}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{4\sqrt{10}}{3}$.
∴异面直线BE与DF所成角的正切值为$\frac{4\sqrt{10}}{13}$.
点评 本题考查异面直线所成角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (-5,1) | B. | (-∞,-5)∪(1,+∞) | C. | (-1,5) | D. | (-∞,-1)∪(5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,3) | B. | (1,3) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com