精英家教网 > 高中数学 > 题目详情

【题目】在衡阳市创全国文明城市(简称创文)活动中,市教育局对本市ABCD四所高中学校按各校人数分层抽样,随机抽查了200人,将调查情况进行整理后制成下表:

学校

A

B

C

D

抽查人数

10

15

100

75

创文活动中参与的人数

9

10

80

49

假设每名高中学生是否参与创文活动是相互独立的

1)若本市共8000名高中学生,估计C学校参与创文活动的人数;

2)在上表中从AB两校没有参与创文活动的同学中随机抽取2人,求恰好AB两校各有1人没有参与创文活动的概率;

3)在随机抽查的200名高中学生中,进行文明素养综合素质测评(满分为100分),得到如上的频率分布直方图,其中.求ab的值,并估计参与测评的学生得分的中位数.(计算结果保留两位小数).

【答案】1320023)中位数为

【解析】

1)求得C学校高中生的总人数,再乘以C学校所占的比例,既得答案;

2)分别标记AB两校没有参与创城活动同学,写出任取两人的所有基本事件,选出其中满足的条件的基本事件,由古典概型求概率的公式,求得答案;

3)由频率分布直方图的面积为1构建方程,联系已知求得,由前两组的频率和小于0.5,前三组的频率和大于0.5,所以中位数在第三组,且在第三组中的频率恰占0.18,求出第三组的长度加上70,既得答案.

1C学校高中生的总人数为

C学校参与创文活动的人数为

2A校没有参与创城活动的这1人记为B校没有参与创文活动的这5人分别记为

任取2人共15种情况,如下:,这15种情况发生的可能性是相等的.

设事件N为抽取2人中AB两校各有1人没有参与创文活动,有,共5种情况.

.故恰好AB两校各有1人没有参与创文活动的概率为

3)依题意,,所以

,所以

因为,所以中位数在第三组,

所以中位数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界第一产粮大国,我国粮食产量很高,整体很安全按照14亿人口计算,中国人均粮食产量约为950斤﹣比全球人均粮食产量高了约250斤.如图是中国国家统计局网站中20102019年,我国粮食产量(千万吨)与年末总人口(千万人)的条形图,根据如图可知在20102019年中( )

A.我国粮食年产量与年末总人口均逐年递增

B.2011年我国粮食年产量的年增长率最大

C.2015年﹣2019年我国粮食年产量相对稳定

D.2015年我国人均粮食年产量达到了最高峰

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】产量相同的机床一和机床二生产同一种零件,在一个小时内生产出的次品数分别记为,它们的分布列分别如下:

0

1

2

3

0.4

0.3

0.2

0.1

0

1

2

0.2

0.6

0.2

1)哪台机床更好?请说明理由;

2)记表示台机床小时内共生产出的次品件数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.

(1)求关于的函数解析式,并求出定义域;

(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,当时,恒有,求实数的取值范围;

(Ⅱ)若,求证:对任意上有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求的取值范围;

2)设两个极值点分别为:,证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,

1)求证:B1CAB

2)若∠CBB160°,ACBC,且点A在侧面BB1C1C上的投影为点O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年,新型冠状病毒来势凶猛,老百姓一时间谈毒色变,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出字的繁体字进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:

每周喝酒量(两)

人数

100

300

450

100

规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量达到8两的叫有酒瘾的人.

1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;

2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.

常喝酒

不常喝酒

合计

得病

不得病

250

650

合计

参考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案