精英家教网 > 高中数学 > 题目详情

【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.

(1)求函数的解析式;

(2)若方程上有且仅有一个实根,求的取值范围;

(3)若函数的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.

【答案】(1)(2)(3)

【解析】

试题分析】(1)借助平移的知识可直接求得函数解析式;(2)先换元将问题进行等价转化为有且只有一个根,再构造二次函数运用函数方程思想建立不等式组分析求解;(3)先依据题设条件求出函数的解析式,再运用不等式恒成立求出函数的最小值:

解:(1)

(2)设,则,原方程可化为

于是只须上有且仅有一个实根,

法1:设,对称轴t=,则 ① , 或

由①得 ,即

由②得 无解, ,则

法2:由 ,得,

,则,记

上是单调函数,因为故要使题设成立,

只须,即

从而有

(3)设的图像上一点,点关于的对称点为

由点的图像上,所以

于是..

,化简得,设,恒成立.

解法1:设,对称轴

③ 或

由③得, 由④得,即

综上,.

解法2:注意到,分离参数得对任意恒成立

,即

可证上单调递增

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两点,点P是椭圆上任意一点,则点P到直线AB的距离最大值为( )

A. B. C. 6D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温 (℃)与该小卖部的这种饮料销量(杯),得到如下数据:

日期

1月11日

1月12日

1月13日

1月14日

1月15日

平均气温(℃)

9

10

12

11

8

销量(杯)

23

25

30

26

21

(1)请根据所给五组数据,求出关于的线性回归方程

(2)据(1)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(℃),请预测该奶茶店这种饮料的销量.

(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中:实数满足.

(1),且为真,为假,求实数的取值范围;

(2)的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有四个不同的解,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的是(
A.函数y=f(x)为R上可导函数,则f'(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“ ”的否定是“?x∈R,x2+x﹣1>0”
C.“ ”是“函数f(x)=sin(ωx+φ)是偶函数”的充要条件
D.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元,若病人每餐至少需要35单位蛋白质和40单位铁质。试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案