精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (是自然对数的底数), .

(1)求曲线在点处的切线方程;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意.

【答案】(Ⅰ)(Ⅱ)单调递增区间为;单调递减区间为. (Ⅲ)见解析.

【解析】试题分析:(1)求出的导数,可得切线的斜率和切点,即可得到所求切线的方程;
(2)求导数,利用导数的正负,求的单调区间;
(3) .由,确定当时, .当时, ,即可证明结论.

试题解析:

(Ⅰ)的定义域为,

,得,∴点A的坐标为.

,所以

所以曲线在点A处的切线方程为

(Ⅱ),所以

,因此当 单调递增;

单调递减.

所以的单调递增区间为;单调递减区间为.

(Ⅲ)证明:因为,所以 等价于时恒成立,

由(Ⅱ)知,当时, 的最大值

因为

所以

因此任意 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.20171月某日某省x个监测点数据统计如下:

空气污染指数

(单位:μg/m3

监测点个数

15

40

y

10

1)根据所给统计表和频率分布直方图中的信息求出xy的值,并完成频率分布直方图;

(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点.

(1)求证:

(2)设平面平面 ,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的发展,微信越来越成为人们交流的一种方式,某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)由以上统计数据填写下面列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;

年龄不低于45岁的人

年龄低于45岁的人

合计

赞成

不赞成

合计

(2)若对年龄分别在 的被调查人中各抽取一人进行追踪调查,求选中的2人中至少有一人赞成使用微信交流的概率.

参考公式: ,其中

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某物体一天中的温度是时间的函数,已知,其中温度的单位是,时间的单位是小时,规定中午12:00相应的,中午12:00以后相应的取正数,中午12:00以前相应的取负数(例如早上8:00相应的,下午16:00相应的),若测得该物体在中午12:00的温度为,在下午13:00的温度为,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.

(1)求该物体的温度关于时间的函数关系式;

(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查高一新生中女生的体重情况,校卫生室随机选20名女生作为样本,测量她们的体重(单位:kg),获得的所有数据按照区间 进行分组,得到频率分布直方图如图所示,已知样本中体重在区间上的女生数与体重在区间上的女生数之比为.

(1)求的值;

(2)从样本中体重在区间上的女生中随机抽取两人,求体重在区间上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中为了解高中学生的性别和喜爱打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:

喜爱打篮球

不喜欢打篮球

合计

男生

5

女生

10

合计

已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为.

(1)请将上述列联表补充完整;

(2)判断是否有99.5%的把握认为喜欢打篮球与性别有关?

附:

7.879

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数,是自然对数的底数).

(1)当时,求函数的单调区间;

(2)若函数内存在两个极值点,求的取值范围.

查看答案和解析>>

同步练习册答案