精英家教网 > 高中数学 > 题目详情
9.设全集U=R,若集合A={x|-1≤x≤5},B={x|y=lg(x-1)},则∁U(A∩B)为(  )
A.{1<x≤5}B.{x≤-1或x>5}C.{x≤1或x>5}D.{1≤x<5}

分析 利用交集与补角运算性质即可得出.

解答 解:∵集合A={x|-1≤x≤5},B={x|y=lg(x-1)}={x|x>1},
∴A∩B={x|1<x≤5}.
则∁U(A∩B)={x|x≤1,或x>5}.

点评 本题考查了交集与补角运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2x2-7,求f(-1)、f(5)、f(a)、f(x+h)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设全集为R,集合M={x|x2≤2},N={x|log2x<1},则M∩N=(  )
A.(-∞,2)B.(-∞,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M(x0,y0)在直线x+y-4=0上,若圆C:x2+y2=4上存在点N,使得∠OMN=30°(O为坐标原点),则x0的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在区间[-$\frac{π}{2},\frac{π}{2}$]上随机取一个数记为x,则使得sinx≥$\frac{1}{2}$的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=4x3-3x在(a,a+2)上存在最大值,则实数a的取值范围是(-$\frac{5}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1)(x>0)}\\{{2}^{x+1}(x≤0)}\end{array}\right.$,则f($\sqrt{10}$)+f(-1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{ax-1}{x+3}$在(-∞,-3)上是减函数,则a的取值范围是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log2(4-x2)的定义域为A,函数g(x)=x2-2ax+a,对任意的x1∈A总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案