【题目】已知P为椭圆 =1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为 .
【答案】7
【解析】解:由椭圆 =1可得a=5,b=4,c=3,因此焦点分别为:F1(﹣3,0),F2(3,0). |PF1|+|PF2|=2a=10.
圆(x+3)2+y2=1的圆心与半径分别为:F1(﹣3,0),r1=1;
圆(x﹣3)2+y2=4的圆心与半径分别为:F2(3,0),r2=2.
∵|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.
∴|PM|+|PN|≥|PF1|+|PF2|﹣1﹣2=7.
故答案为:7.
由椭圆 =1可得焦点分别为:F1(﹣3,0),F2(3,0).|PF1|+|PF2|=2a.圆(x+3)2+y2=1的圆心与半径分别为:F1 , r1=1;圆(x﹣3)2+y2=4的圆心与半径分别为:F2 , r2=2.利用|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.即可得出.
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC内的一点.
(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数 在(0,+∞)上为增函数,g(x)=f(x)+2
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣3x.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若过点A(1,m)(m≠﹣2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,又是一个常数,已知或时, 只有一个实根,当时, 有三个相异实根,给出下列命题:
①和有一个相同的实根;
②和有一个相同的实根;
③的任一实根大于的任一实根;
④的任一实根小于的任一实根.
其中正确命题的个数为( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+bx2+cx的导函数图象关于直线x=2对称
(1)求b值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com