精英家教网 > 高中数学 > 题目详情

【题目】已知为抛物线的焦点,过的动直线交抛物线两点.当直线与轴垂直时,

(1)求抛物线的方程;

(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线的斜率成等差数列,求点的坐标.

【答案】(1) (2)

【解析】

(1)由题意可得,即可求出抛物线的方程,(2)设直线的方程为,联立消去,得,根据韦达定理结合直线的斜率成等差数列,即可求出点的坐标.

解:(1)因为,在抛物线方程中,令,可得

于是当直线与轴垂直时,,解得

所以抛物线的方程为

(2)因为抛物线的准线方程为,所以

设直线的方程为

联立消去,得

,则.

若点满足条件,则

因为点均在抛物线上,所以

代入化简可得

代入,解得

代入抛物线方程,可得

于是点为满足题意的点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义变换将平面内的点变换到平面内的点;若曲线经变换后得到曲线,曲线经变换后得到曲线,依次类推,曲线经变换后得到曲线,当时,记曲线轴正半轴的交点为,某同学研究后认为曲线具有如下性质:①对任意的,曲线都关于原点对称;②对任意的,曲线恒过点;③对任意的,曲线均在矩形(含边界)的内部,其中的坐标为;④记矩形的面积为,则;其中所有正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面积为,求C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过点,并且与圆相外切,设动圆的圆心的轨迹为.

1)求曲线的方程;

2)过动点作直线与曲线交于两点,当的中点时,求的值;

3)过点的直线与曲线交于两点,设直线,点,直线于点,求证:直线经过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式 ,参考数据.

(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为且抛物线的焦点恰好是椭圆的一个焦点.

(Ⅰ)求椭圆的方程

(Ⅱ)过点作直线与椭圆交于两点满足为坐标原点),求四边形面积的最大值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案