【题目】已知为抛物线:的焦点,过的动直线交抛物线于,两点.当直线与轴垂直时,.
(1)求抛物线的方程;
(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线,,的斜率成等差数列,求点的坐标.
科目:高中数学 来源: 题型:
【题目】定义变换将平面内的点变换到平面内的点;若曲线经变换后得到曲线,曲线经变换后得到曲线,…,依次类推,曲线经变换后得到曲线,当时,记曲线与、轴正半轴的交点为和,某同学研究后认为曲线具有如下性质:①对任意的,曲线都关于原点对称;②对任意的,曲线恒过点;③对任意的,曲线均在矩形(含边界)的内部,其中的坐标为;④记矩形的面积为,则;其中所有正确结论的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过点,并且与圆:相外切,设动圆的圆心的轨迹为.
(1)求曲线的方程;
(2)过动点作直线与曲线交于两点,当为的中点时,求的值;
(3)过点的直线与曲线交于两点,设直线:,点,直线交于点,求证:直线经过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式 ,参考数据.
(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式: ,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且抛物线的焦点恰好是椭圆的一个焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作直线与椭圆交于,两点,点满足(为坐标原点),求四边形面积的最大值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com