精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为Sn,满足Sn+2n=2an
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足bn=log2(an+2),求证:数学公式

证明:(I)由Sn+2n=2an得 Sn=2an-2n
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)
∴数列{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1
∴an=2n+1-2.
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,
==

分析:(I)由Sn+2n=2an得Sn=2an-2n,再写一式,两式相减,即可证数列{an+2}是以a1+2为首项,以2为公比的等比数列,从而可求数列{an}的通项公式an
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,则==,由此可证结论.
点评:本题考查数列递推式,考查等比数列的证明,考查数列的通项,考查不等式的证明,确定数列的通项,正确放缩是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案