精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与椭圆
x2
9
+
y2
5
=1
有公共焦点,右焦点为F,且两支曲线在第一象限的交点为P,若|PF|=2,则双曲线的离心率为(  )
A、5
B、
3
C、
1
2
D、2
分析:根据题意求出椭圆的右焦点为F(2,0),利用两点间的距离公式与椭圆的方程,算出点P坐标为(
3
2
15
2
),由点P在双曲线上且椭圆与双曲线有公共的焦点,建立关于a、b的方程组,解出a、b之值再利用双曲线的离心率公式加以计算,可得答案.
解答:解:∵椭圆
x2
9
+
y2
5
=1
中,c=
9-5
=2,∴椭圆的右焦点为F(2,0).
设椭圆与双曲线的交点为P(m,n),(m>0,n>0)
可得
m2
9
+
n2
5
=1
(m-2)2+n2
=2
,解之得m=
3
2
,n=
15
2
,得P坐标为(
3
2
15
2
),
又∵双曲线
x2
a2
-
y2
b2
=1
与椭圆有公共焦点,且经过点P(
3
2
15
2
),
(
3
2
)
2
a2
-
(
15
2
)
2
b2
=1
a2+b2=4
,解之得a=1,b=
3

因此,双曲线的离心率e=
c
a
=2.
故选:D
点评:本题给出有公共焦点的椭圆与双曲线,在已知它们的一个交点坐标的情况下求双曲线的离心率.着重考查了椭圆和双曲线的标准方程、简单几何性质、两点间的距离公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案